Evidence for a recruitment and sequestration mechanism in Huntington's disease.
نویسندگان
چکیده
Polyglutamine (polyQ) extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyQ aggregates in Huntington's disease. We constructed an array of CAG/CAA triplet repeats, coding for a range of 25-300 glutamine residues, which was used to generate expression constructs with minimal flanking sequence. Normal-length (25 glutamine residues) polyQ did not aggregate when transfected alone. Remarkably, when co-transfected with extended (100-300 glutamine residues) polyQ tracts, normal-length polyQ-containing peptides were trapped in insoluble detergent-resistant aggregates. Aggregates formed in the cytoplasm but were visible in the nucleus only when a strong nuclear localization signal was present. Intermolecular interactions between polyQ tracts mediated the localization of heterogeneous aggregates into the nucleolus by nucleolin protein. Our results suggest that extended polyQ can interact with cellular polyQ-containing proteins, transport them to ectopic cellular locations, and form heterogeneous polyQ aggregates. We provide evidence for a recruitment mechanism for pathogenesis in the polyQ neurodegenerative disorders. In susceptible cells, extended polyQ tracts in huntingtin might interact with and sequester or deplete certain endogenous polyQ-containing cellular proteins.
منابع مشابه
Behavioral study of effects of mesenchymal stem cells transplant on motor deficits improvement in animal model of Huntington\'s disease
Introduction: As an inherited neurodegenerative disease, Huntington's disease is accompanied with wide neuronal degeneration in neostriatum and neocortex. Progress of the disease causes disabling clinical effects on movements, recognition and physiology of the body, and finally results in death. At this stage of knowledge we are, there is no effective therapeutic strategy for diminishing the mo...
متن کاملDynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies.
Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of th...
متن کاملDysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease.
Caspase-1 plays a role in the pathogenesis of a variety of neurological diseases. Caspase-1 activation is an early event in models of Huntington's disease (HD). However, mechanisms regulating the activation of this apical caspase in cell death are not known. Receptor interacting protein-2 (Rip2) and caspase recruitment domain (CARD) only protein (Cop) are two CARD proteins with significant homo...
متن کاملTranscriptional dysregulation in Huntington's disease.
Although the gene responsible for Huntington's disease was discovered in 1993, the pathogenic mechanisms by which mutant huntingtin causes neuronal dysfunction and death remain unclear. However, increasing evidence suggests that mutant huntingtin disrupts the normal transcriptional program of susceptible neurons. Thus, transcriptional dysregulation might be an important pathogenic mechanism in ...
متن کاملP 49: Exercise Effects on Cognitive Impairments Through Altering Neuroinflammation
Cognitive impairments describe a state of diminished or impaired mental and/or intellectual function such as Alzheimer's disease, Huntington's disease and Parkinson's disease. As these disorders are more frequent in the elderly and due to the ageing of population, serious attention must be paid to these diseases. Exercise has shown to have preventive and therapeutic effects on cognitive impairm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 354 1386 شماره
صفحات -
تاریخ انتشار 1999